
.

Note that Information contained in this document is for educational purposes.

Hash Cracking

Paul Oates – @abertay.ac.uk

Intro to Security – CMP110

BSc Ethical Hacking Year 1

2020/21

.

Abstract

Hash cracking is a common method in which Black Hat Hackers can steal a targets data. The aim

of my report is to build my own tools as well as using tools Security Researchers have built to

gain a fuller understanding of the subject. Hash cracking attacks can be carried out in two main

ways; wordlist and brute force. Wordlist is where an attacker can use previous password leaks to

crack passwords. The other method, brute force, is where an attacker tries every possible

variation of a password. For the purpose of my investigation, I carried out brute force and

wordlist attacks in Python, C++ and Hashcat. My findings showed Hashcat to be the fastest at

cracking hashes. My studies also identified that due to the rapid advancement of technology in

this area we have seen devices such as GPU’s being able to crack weak passwords in less than a

second. Technology such as cloud computing have only made this even easier, as large

expensive GPU’s can be rented for a couple of hours for a small fee. I now believe hash cracking

is a security risk that current and future software developers and system admins will need to

consider when developing and maintaining software. However, I also firmly believe it is the

responsibility of the end user to implement good password security practices wherever possible.

.

Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Aim .. 2

2 Procedure ... 3

2.1 Overview of Procedure .. 3

2.2 Procedure part 1 .. 6

3 Results .. 10

3.1 Results for part 1 ... 10

4 Discussion .. 12

4.1 General Discussion ... 12

4.2 Countermeasures .. 13

4.3 Conclusions ... 13

4.4 Future Work .. 13

References .. 14

Appendices ... 15

Appendix A ... 15

1 | P a g e

1 INTRODUCTION

1.1 BACKGROUND

Hashing algorithms are used to obscure data to keep the information hidden and

secure. Hashing algorithms have been used since the first computer databases.

They involve complex mathematical equations which ‘hash’ the data making the

data difficult to decrypt.

As technology advances hashing algorithms such as MD2, MD4 and MD5 have

become more vulnerable to attacks these have been replaced by more secure

standards such as SHA256, SHA512. However large portions of the internet still

use these outdated standards. Hashing is now used in areas of computing such as

computer forensics, to ensure a file has not been tampered with, and Password’s

to protect the user.

The advancement of technology becomes a problem in itself as passwords are very

easy to crack. For example due to the power of modern GPU’s such as a Nvidia

RTX3090 which can calculate 65079.1 MH/s in MD5 hashes. When comparing to

a GPU of two years ago a Nvidia RTX2080TI which can calculate 53975.3 MH/s

that’s greater than a 20% increase in just two years. Cloud computing software

such as Amazon Web Services and Microsoft Azure allow you rent expensive GPU

computers for a few hours these can be used to crack hashes.

Another issue with technology is that while password hashing is a key step to

protect users, it is not infallible as it hashes in a consistent manner. This means that

it is predictable and can be cracked.

Another identified problem is collisions, this is where two completely different

phases equal the same hash, due to their only being a limited amount of variation

of hashes.

2 | P a g e

1.2 AIM

• The aim of my project is to investigate wordlist and brute force hash cracking

techniques and use these to build my own tools for hash cracking.

• I will then go on to investigate ways these methods can be accelerated on

devices such as GPU’s and what sort of performance benefit this brings.

• I will then compare the theoretical performance of running hash cracking on AWS and

Azure vs. the GPU

3 | P a g e

2 PROCEDURE

2.1 OVERVIEW OF PROCEDURE

Overview

• I ran a wordlist and brute force attack using Python, C++ and Hashcat

• I also attempted a GPU wordlist attack in CUDA

• The Program output is used to create a performance report

• I calculated the hash rate by dividing the number of hashes by time taken.

• Using this method, I graphed the performance of each attack.

 Hardware/Software

• My machine’s Operating System is Windows 10 64bit (10.0.19042 Build 19042)

• Running Intel i7-8565U and a Nvidia MX150

• I installed Nvidia’s CUDA driver to run programs on the GPU

• Running Visual Studio 2019 for C++ and Visual Studio Code for python 3.9

• I have installed Hashcat 6.6.1 from GitHub

Screenshots

Fig2.1 shows the main bruteforce function for Python, this receives the value to be

hashed encodes it, hashes it and compares it to the user hash list. If hash match is

found it will display to the screen and write it to a file.

4 | P a g e

Fig2.2 shows main wordlist function for python. This reads in each password in turn

from the wordlist file, removes the new line character, encodes as UTF-8 and calculates

the hash. It then compares the calculated hash with the user hash list stored in an array.

if hash match is found it will display to the screen and write it to a file

Fig 2.3 main Wordlist function for C++, this reads in all passwords to a memory buffer,

removes the new line character and calculates the hash. It then compares the calculated

hash with the user hash list provided. if hash match is found it will display the match to

the screen and write it to a file

5 | P a g e

Fig 2.4 main Bruteforce function in C++, this generates all possible four character

passwords. Each password is hashed in turn and compared to the user hash list

provided. if hash match is found it will display the match to the screen and write it to a

file

Fig 2.5 Hashcat 6.6.1 program was obtained from GitHub. The command used (see

below) configures Hashcat for MD5 wordlist hash cracking. The program is provided

with the user hash list “hashed.hash” and a wordlist dictionary “hashval.dict”. if a hash

match is found it will display the match to the screen and write it to a file

Command

.\hashcat.exe -a 0 -m 0 -O .\hashed.hash .\hashval.dict

Output
Session..........: hashcat
Status...........: Exhausted
Hash.Name........: MD5
Hash.Target......: .\hashed.hash
Time.Started.....: Mon May 10 11:00:23 2021 (9 secs)
Time.Estimated...: Mon May 10 11:00:32 2021 (0 secs)
Guess.Base.......: File (.\hashval.dict)
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........: 8241.7 kH/s (1.03ms) @ Accel:64 Loops:1 Thr:1024 Vec:1
Recovered........: 18/19 (94.74%) Digests
Progress.........: 78074896/78074896 (100.00%)
Rejected.........: 0/78074896 (0.00%)
Restore.Point....: 78074896/78074896 (100.00%)
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidates.#1....: ~|V' -> ~~~~
Hardware.Mon.#1..: Temp: 62c Util: 69% Core:1632MHz Mem:3003MHz Bus:4

6 | P a g e

2.2 PROCEDURE PART 1

Python wordlist

• The python wordlist program runs from Visual Studio Code.

• The program name is “hash_Cracking_wordlist.py”

• The program expects the following files to be stored locally to the Python file:-

▪ Dictionary File containing all possible four letter passwords (78074896)

• “hashval.txt”

▪ User Hash List containing the list of user provided hashes

• “hashed.txt”

• As the program is running it will display status of hashes found in the terminal window

• The program only supports MD5 hash.

• The user can provide their own hashes in the “hashed.txt” file. They must be in MD5

format with a single hash per line.

• I have provided a list of all possible four-letter passwords. The user can add additional

passwords to the file “hashval.txt”.

Python Brute Force

• The python wordlist program runs from Visual Studio Code.

• The program name is “hash_Cracking_bruteforce_4letters.py”

• The program expects the following file to be stored locally to the Python file :-

▪ User Hash List containing the list of user provided hashes

• “hashed.txt”

• As the program is running it will display the status of hashes found in the terminal

window

• The program only supports MD5 hash.

• The user can provide their own hashes in the “hashed.txt” file. They must be in MD5

format with a single hash per line.

• The program creates and hashes all possible four letter passwords. The program would

require to be updated to support any other password length.

7 | P a g e

C++ Wordlist

• The C++ wordlist program runs on Windows 10 (x64).

• The program name is “C++_wordlist.exe”

• The program expects the following file to be stored in the same directory as the

executable:-

▪ Dictionary File containing all possible four-letter passwords (78074896)

• “hashval.txt”

▪ User Hash List containing the list of user provided hashes

• “hashed.txt”

• As the program is running it will display status of hashes found in the terminal window

• The program only supports MD5 hash.

• The user can provide their own hashes in the “hashed.txt” file. They must be in MD5

format with a single hash per line.

• I have provided a list of all possible four-letter passwords. The user can add additional

passwords to the file “hashval.txt”.

C++ Bruteforce

• The C++ wordlist program runs on Windows 10 (x64).

• The program name is “C++bruteforce.exe”

• The program expects the following file to be stored in the same directory as the

executable:-

▪ User Hash List containing the list of user provided hashes

• “hashed.txt”

• As the program is running it will display the status of hashes found in the terminal

window.

• The program only supports MD5 hash.

• The user can provide their own hashes in the “hashed.txt” file. They must be in MD5

format with a single hash per line.

• The program creates and hashes all possible four letter passwords. The program would

require to be updated to support any other password length

8 | P a g e

Hashcat

• I ran Hashcat to show the performance benefits of GPU vs CPU with both a wordlist and

brute force attack

• I installed Hashcat 6.6.1 from GitHub at the following link

[https://github.com/hashcat/Hashcat][10/05/2021]

Wordlist Hashcat

• Open the “.Potfile” and remove any existing hashes

• The program expects the following file to be stored in the same directory as the

executable:-

▪ Dictionary File containing all possible four-letter passwords (78074896)

• “hashval.dict”

▪ User Hash List containing the list of user provided hashes

• “hashed.hash”

• The command executed is.\hashcat.exe -a 0 -m 0 -O .\hashed.hash .\hashval.dict

Where;-

o -a is attack mode

o 0 is wordlist

o -m is hash type

o 0 is md5

o – O is optimised Kernel

o .\hashed.hash is the user hash file

o .\hashval.dict is the wordlist dictionary

• The program supports various hash algorithms, but the command needs to be altered.

• The user can provide their own hashes in the “hashed.hash” file. They must be in MD5

format with a single hash per line.

• I have provided a list of all possible four-letter passwords. The user can add additional

passwords to the file “hashval.dict”.

9 | P a g e

Bruteforce Hashcat

• Open the “.Potfile” and remove any existing hashes

• The program expects the following file to be stored in the same directory as the

executable:-

▪ User Hash List containing the list of user provided hashes

• “hashed.hash”

• The command executed is.\hashcat.exe -a 3 -m 0 -O .\hashed.hash ?s?s?s?s for special

charcters

Where;-

o -a is attack mode

o 3 is bruteforce

o -m is hash type

o 0 is md5

o – O is optimised Kernel

o .\hashed.hash is the user hash file

o ?s indicated for the special characters this is repeated 4 times for a password of

length four

• The command executed is.\hashcat.exe -a 3 -m 0 -O .\hashed.hash

• Where;-

o -a is attack mode

o 3 is bruteforce

o -m is hash type

o 0 is md5

o – O is optimised Kernel

o .\hashed.hash is the user hash file

• The program supports various hash algorithms, but the command needs to be altered

• The user can provide their own hashes in the “hashed.hash” file. They must be in MD5

format with a single hash per line.

• The program creates and hashes all possible passwords. The program will only stop if

all passwords are matched or program is stopped by the user.

Calculation

• The performance of each method is now calculated.

• This is done by subtracting program finished time from program start time

• This is the number of hashes divided by the time taken then divided by a million to

calculate Million Hashes per second (MH/s).

10 | P a g e

3 RESULTS

3.1 RESULTS FOR PART 1

Hash cracking results table

Bruteforce

Wordlist

Other(high end GPU’s/severs)

Method Number of unknown Hashes Number of Words Time Taken seconds Start Time End MH/s

Wordlist Python 4 letters 18 78074896 364 11:58:24 12:04:28 0.21

Bruteforce Python 4 letters 18 78074896 339 13:31:46 13:37:25 0.23

c++ bruteforce 18 78074896 1015 00:00:00 00:16:55 0.07692108

c++ wordlist 18 78074896 1000 00:00:00 00:16:40 1.41

Hashcat wordlist 18 78074896 27 11:00:07 11:00:34 2.89

Hashcat bruteforce 18 78074896 6 11:23:40 11:23:46 13.01

RTX3080 65079.00

AWS Server 425000000.00

Azure Server 4852.80

0.23

0.07

13.01

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Python

c++

Hashcat

MH/s

0.21

1.56

13.01

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Python

c++

Hashcat

MH/s

11 | P a g e

65079.00

425000000.00

4852.80

0.00 100000000.00 200000000.00 300000000.00 400000000.00 500000000.00

RTX3080

AWS Server

Azure Server

MH/s

12 | P a g e

4 DISCUSSION

4.1 GENERAL DISCUSSION

• I have met the aims of my investigation. I have built my own wordlist and brute force

tools using Python and C++. I looked at GPU acceleration in Hashcat and the

performance benefit of running AWS and Azure and the cost implications

• As we can see above Hashcat with over 7,000 commits is an efficient tool for hash

cracking weak passwords especially with its wide support for AMD, Nvidia and Intel

CPU/GPU’s. However Strong passwords are still the first line of defence

• The cost of running an AWS server such as the p3.16xlarge is £17.60 per hour this

means that the hashed information needs to be important enough to spend this sort of

money. However, the AWS server with a hash rate of 425GH/s would be able to crack

longer passwords in a much shorter period

• My results demonstrate computers are getting faster and faster at cracking hashes

especially in GPU’s and cloud computing servers such as AWS.

• With more time I believe I may be able to build hash cracking tools on the GPU using

CUDA in C++

• From my reading, wordlists are more effective than brute force at cracking longer

passwords

• My knowledge of C++ at this point was not adequate to build a fast hash cracking tool

in this language

• Hardware and software available to me at this time may not have been optimal for this

type of work

13 | P a g e

4.2 COUNTERMEASURES

• My results show that with time all hashes can be broken. However, passwords that are

complex are not of any interest to a Black Hat Hacker as these passwords will take too

long to crack.

• This means that complex passwords such as long anagrams with odd capitalisation and

special characters mixed in make good passwords.

• Another counter measure is two step verification this means that even if a password is

leaked the hacker would also have to have access to a secondary device to have access

to an account

• Modern password managers now alert users to data breaches and websites such as

https://haveibeenpwned.com/ can be set up to send emails to alert the user of

vulnerable passwords

4.3 CONCLUSIONS

• In conclusion, a determined hacker trying to gain access to an account has many tools

available to use against a target.

• A weak password can be cracked more easily than a strong password

• Advancements in hardware is decreasing the time taken to crack passwords

• Openly available wordlists online make end users even more vulnerable to attacks

4.4 FUTURE WORK

• In the future I would like to run some sort of hash cracking software such as Hashcat on

an p3.16xlarge to see the speed that people online report it has.

• I would also benefit from gaining further knowledge and understanding of C++ to allow

me to optimise my programs

• I would also benefit from gaining further understanding of CUDA to build a GPU hash

cracking tool

14 | P a g e

REFERENCES
 [Cybernews][online][11/05/2021]

https://cybernews.com/wp-content/uploads/2020/09/Hasing-VS-encryption-11.png

[Techradar][online][11/05/2021]

https://www.techradar.com/news/the-nvidia-geforce-rtx-3090-is-very-good-at-cracking-

passwords-and-thats-bad-news

[onlinehashcrack][online][11/05/2021]

https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-2080-ti.php

[GitHub][online repository][11/5/2021]

https://github.com/JieweiWei/md5

[GitHub][online repository][11/5/2021]

https://github.com/hashcat/hashcat

[medium][online][11/5/2021]

https://medium.com/@iraklis/running-hashcat-v4-0-0-in-amazons-aws-new-p3-16xlarge-

instance-e8fab4541e9b

https://www.techradar.com/news/the-nvidia-geforce-rtx-3090-is-very-good-at-cracking-passwords-and-thats-bad-news
https://www.techradar.com/news/the-nvidia-geforce-rtx-3090-is-very-good-at-cracking-passwords-and-thats-bad-news
https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-2080-ti.php
https://github.com/JieweiWei/md5
https://github.com/hashcat/hashcat
https://medium.com/@iraklis/running-hashcat-v4-0-0-in-amazons-aws-new-p3-16xlarge-instance-e8fab4541e9b
https://medium.com/@iraklis/running-hashcat-v4-0-0-in-amazons-aws-new-p3-16xlarge-instance-e8fab4541e9b

15 | P a g e

APPENDICES

APPENDIX A

• I have included the following with my upload :-

o Executables for my C++ hash cracking tools

o Python files for my hash cracking tools

o Wordlist and brute force source code
o Text files for dictionary wordlist and hashed values

